ConText: An Algorithm for Identifying Contextual Features from Clinical Text
نویسندگان
چکیده
Applications using automatically indexed clinical conditions must account for contextual features such as whether a condition is negated, historical or hypothetical, or experienced by someone other than the patient. We developed and evaluated an algorithm called ConText, an extension of the NegEx negation algorithm, which relies on trigger terms, pseudo-trigger terms, and termination terms for identifying the values of three contextual features. In spite of its simplicity, ConText performed well at identifying negation and hypothetical status. ConText performed moderately at identifying whether a condition was experienced by someone other than the patient and whether the condition occurred historically.
منابع مشابه
Emotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملA Model for Detecting of Persian Rumors based on the Analysis of Contextual Features in the Content of Social Networks
The rumor is a collective attempt to interpret a vague but attractive situation by using the power of words. Therefore, identifying the rumor language can be helpful in identifying it. The previous research has focused more on the contextual information to reply tweets and less on the content features of the original rumor to address the rumor detection problem. Most of the studies have been in...
متن کاملAn Improvement in Support Vector Machines Algorithm with Imperialism Competitive Algorithm for Text Documents Classification
Due to the exponential growth of electronic texts, their organization and management requires a tool to provide information and data in search of users in the shortest possible time. Thus, classification methods have become very important in recent years. In natural language processing and especially text processing, one of the most basic tasks is automatic text classification. Moreover, text ...
متن کاملContext-aware Argumentative Relation Mining
Context is crucial for identifying argumentative relations in text, but many argument mining methods make little use of contextual features. This paper presents contextaware argumentative relation mining that uses features extracted from writing topics as well as from windows of context sentences. Experiments on student essays demonstrate that the proposed features improve predictive performanc...
متن کاملA General Investigation on the Combination of Local and Global Feature Selection Methods for Request Identification in Telegram
Nowadays, the use of various messaging services is expanding worldwide with the rapid development of Internet technologies. Telegram is a cloud-based open-source text messaging service. According to the US Securities and Exchange Commission and based on the statistics given for October 2019 to present, 300 million people worldwide used telegram per month. Telegram users are more concentrated in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007